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1 Introduction

In this supplementary material we show additional qualitative results in sec-
tion 2. Section 3 contains the results on the standard validation set [2] for the
KITTI Object benchmark. Our scoring function is explained in detail in section 4
and we show its efficacy in Table 2. Section 5 contains additional information
regarding the object point cloud filtering algorithm. In section 6 we compare
the reconstruction loss for temporally consecutive images and stereo images. In
section 7 we consider the simultaneous estimation of pose and shape.

2 Additional Qualitative Results

In Figure 1 and Figure 2 we show additional qualitative comparisons of the
proposed model, MonoGRNet [6], and Mono3D [1]. In Figure 2a we show that
our model is able to predict the position and orientation of a vehicle which
is partially occluded by a cyclist. However, it is apparent that it is still very
challenging for the proposed method to handle heavily truncated vehicles.

3 Results on Standard Validation Set

In Table 1 we compare the results of our method, MonoGRNet [6], and
Mono3D [1] on the validation set proposed within this paper and the standard
validation set introduced in [2]. Unsurprisingly, our method shows better perfor-
mance across all categories on the standard validation set which overlaps with
the train set of the image-to-depth network.

4 Scoring Function

The KITTI Object [3] benchmark requires the submission of a score together
with the 3D detection. If ground truth 3D bounding box labels are used, the
network can directly be trained to output a valid score, which is not possible
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2D Image

Ours: Trained w/o 3D BBox Labels

MonoGRNet: Trained w/ 3D BBox Labels

Mono3D: Trained w/ 3D BBox Labels

Fig. 1. Qualitative comparison of Mono3D [1], MonoGRNet [6], and Ours. We
show ground truth bounding boxes for cars (red), predicted bounding boxes
(green), and the back-projected depth map from BTS [5]. The proposed model
can deliver comparable qualitative results to MonoGRNet. Note that the extra
prediction from MonoGRNet (blue circles) is not a false positive because it
corresponds to a van, which is not a false positive in KITTI.

in the label-less case because for each prediction it is not know if it is corrrect.
Using the loss functions defined for training, the natural choice for a scoring
function is a function that is monotonically decreasing in the single image loss
of a detection, e.g., 1−Lsingle. We choose the single image loss because it is well
defined during inference, where only single images are available. However, this
would discard much information; for example, the loss function does not change
if the distance from the camera changes. Additionally, the loss does not consider
potential occlusion or truncation of the object. Consequently, considering the
full image, all segmentation masks, and the full depth map is beneficial.

The KITTI benchmark groups cars into three categories easy, moderate, and
hard, based on the bounding box height, the occlusion level, and the truncation
level. For our method, we use these categories as an indicator of difficulty and for
completeness restate their definition. For easy, the minimum bounding box height
is 40 pixels, the object must be fully visible, and the maximum truncation is 15 %.
For moderate, the minimum bounding box height is 25 pixels, the maximum
occlusion level is ”partly occluded”, and the maximum truncation is 30 %. For
hard, the minimum bounding box height is 25 pixels, the maximum occlusion
level is ”difficult to see”, and the maximum truncation is 50 %. The difficulty
can be computed from the ground truth label.

For the scoring method described in the following, it is necessary to estimate
the difficulty of a car without the ground truth label. The height of the bounding
box is computed from the bounding box produced by the 2D detector, Mask R-
CNN [4] in our case. The truncation level is difficult to determine, so we choose a
simple approach. If the detected 2D bounding box extends to the image bound-
ary the object will be marked as truncated. For the occlusion, we first order
the objects by the median disparity within their respective segmentation masks.
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Table 1. Comparison of the results for the two validation sets. We show
the result on the validation set proposed within this paper as the first
value and the result on the validation set from [2] as the second value
(our validation set/validation set from [2]). In both cases, the average precision
is the mean over 40 values as introduced in [7]. Our method achieves worse perfor-
mance across all categories on the validation set used within this paper because
the validation set does not overlap with the train set of the image-to-depth net-
work. MonoGRNet achieves better performance in four cases and slightly worse
performance in two cases (10.05/10.15 and 5.67/5.76), which shows that the vali-
dation set chosen for comparison is favorable for MonoGRNet. Mono3D achieves
better performance in four cases, equal performance in one case, and slightly
worse performance in one case, which shows that the validation set chosen for
comparison is also favorable for Mono3D.

Method
APBEV, 0.7 AP3D, 0.7

Easy Mode Hard Easy Mode Hard

Ours 19.23/20.41 9.60/10.34 5.34/ 7.68 6.13/ 9.02 3.10/ 4.57 1.70/3.19
MonoGRNet [6] 23.07/19.72 16.37/12.81 10.05/10.15 13.88/11.90 9.01/ 7.56 5.67/5.76
Mono3D [1] 1.92/ 1.48 1.13/ 1.06 0.77/ 0.75 0.40/ 0.36 0.21/ 0.21 0.17/0.21

We use the 2D intersection over union to determine if a closer object occludes
another object. For each object, the occlusion IoU is the maximum over the IoUs
computed with all objects that are closer to the camera. We assign the difficulty
as follows: If the height is larger than or equal to 40 pixels, and the object is
not truncated and the occlusion IoU is smaller than 5 % we assign pred.-easy .
Otherwise, if the occlusion IoU is smaller than 20 % we assign pred.-moderate.
The remaining objects are assigned to the pred.-hard category. Although the dif-
ficulty estimation is quite crude, it gives reasonable clues whether the detection
will be good. We consider a more careful investigation as an interesting direction
for future work. The scoring function is defined as follows:

score =
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where Lmax
single is the maximum of the single image loss over the test set. This

score partitions the detections into the categories and uses a standard score
within each category.

We compare the proposed scoring function with the baseline scoring function
1 − Lsingle in Table 2. The results are consistently better with the proposed
scoring function which shows its efficacy.
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Table 2. Comparison of the results with and without the proposed scoring
function. We compare the results of our model with the proposed scoring function
(cf. section 4) and the baseline scoring function 1−Lsingle. Both scoring functions
are applied for the predictions from our model with depth maps from BTS [5].
The proposed scoring function improves the performance in every category.

Method
APBEV, 0.7 AP3D, 0.7

Easy Mode Hard Easy Mode Hard

Proposed Scoring Function 19.23 9.60 5.34 6.13 3.10 1.70
Baseline Scoring Function 18.62 8.66 4.88 5.84 2.69 1.53

2D Image

Ours: Trained w/o 3D BBox Labels

MonoGRNet: Trained w/ 3D BBox Labels

Mono3D: Trained w/ 3D BBox Labels

(a) Our model is able to predict the position and orientation of the car occluded by the
cyclist (blue ellipses) without training with 3D bounding box labels. However, it still
struggles with the heavily truncated car on the left, but still delivers a better prediction
than Mono3D (yellow ellipses).

2D Image

Ours: Trained w/o 3D BBox Labels

MonoGRNet: Trained w/ 3D BBox Labels

Mono3D: Trained w/ 3D BBox Labels

(b) Our model predicts an additional car (yellow circles) because it is slightly visible
on the 2D image and detected by Mask R-CNN. The image shows that the proposed
algorithm can handle vehicles with mild occlusion well.

Fig. 2. Qualitative comparison of Mono3D [1], MonoGRNet [6], and Ours. We
show ground truth bounding boxes for cars (red), predicted bounding boxes
(green), and the back-projected point cloud.
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5 Object Point Cloud Filtering

The object point cloud can contain outliers if the segmentation mask is not
aligned with depth discontinuities or if the predicted depth is over-smoothed
at edges. The latter happens especially for depth maps from mono-to-depth
networks but can also be present in depth maps from stereo-to-depth networks.
Therefore, we filter the object point cloud by finding the depth window of length
lw = 6 meters that contains the maximum number of points. Let zi, i = 1, . . . , C
be the depth values of the points before the filtering. The minimum of the depth
window zmin is computed as

zmin = arg max
z≥0

C∑
i=1

1 (z ≤ zi ≤ d+ lw) , (2)

where 1 (·) is the indicator function. For computational reasons, the filter has
to be evaluated on the GPU, and we thus minimize the objective function on a
grid with ten-centimeter spacing, which can be done efficiently using a histogram.
Afterward, we discard points that do not fall within the window.

6 Reconstruction Loss

To further investigate the reconstruction loss, we train one model (Θt) with
temporally consecutive frames and, as a comparison, another model (Θs) with
left-and-right stereo images with known stereo baseline. Both models are trained
solely with the reconstruction loss and use depth maps from GA-Net [8]. To get a
deeper insight into the error, we display it with respect to the depth in Figure 3.
We show that the error for Θs is considerably smaller than for Θt. This indicates
that for temporally consecutive images, the ego- and object motion estimates are
still not accurate enough and we would like to investigate this direction in our
future work.

7 Pose and Shape Entanglement

Simultaneously estimating pose and shape generally resulted in worse perfor-
mance and training instabilities due to the inherent scale ambiguity. The best
results we achieved are obtained with the mean shape – the shape variability of
cars within the KITTI dataset is small and thus a fixed shape is a reasonable ap-
proximation. The model trained with a fixed shape, predicts bounding boxes with
a diagonal of 4.456 meters. The model with variable shape predicts bounding
boxes with a mean diagonal of 4.60 meters on the validation set. The predicted
shape is thus on average larger than the fixed mean shape, which leads to worse
performance. For future work, including a key-point-based loss should help to
overcome this issue. Another direction is the inclusion of a supervisedly-trained
shape-predictor, either from the ground truth labels or by using a database of
car models.
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Fig. 3. Comparison of the reconstruction loss for temporally consecutive images
and stereo images. We show the median translational error in the bird’s-eye
view and the median rotational error. We compute errors on the validation set
for easy cars, where predictions were matched to the ground truth using the
2D intersection over union. The median is computed for bins of size 5 meters
in the z-position of the ground truth. We compare our model trained only with
the reconstruction loss for temporally consecutive images (Θt) and trained only
with the reconstruction loss for stereo images (Θs). For the rotational error, we
consider the 3D bounding box without orientation as is done within the KITTI
benchmark. It is visible that Θs is superior to Θt because the stereo baseline is
known and no objection motion estimation is involved.
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