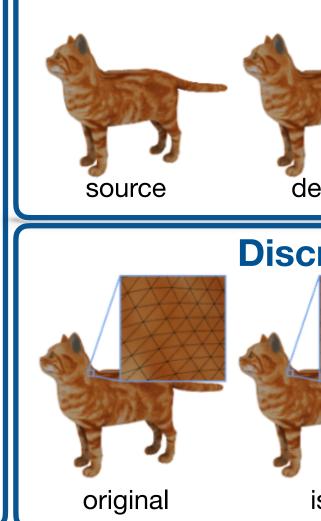

Intrinsic Neural Fields: Learning Functions on Manifolds Lukas Koestler^{1*} Daniel Grittner^{1*} Michael Moeller² Daniel Cremers¹ Zorah Lähner² ¹Technical University of Munich ²University of Siegen *equal contribution

Intrinsic neural fields offer a novel representation for neural fields on manifolds combining the advantages of neural fields with the spectral properties of the Laplace-Beltrami operator.

Contributions

- A novel and versatile representation for neural fields on manifolds.
- We extend the neural tangent kernel analysis of Fourier features¹ to the manifold setting.
- We show state-of-the-art quality for **high-fidelity** texture reconstruction.
- We demonstrate the versatility of our method through various applications: texture transfer, texture reconstruction with view dependence, and discretization-agnostic learning on meshes and point clouds.



NeuTex³

TF²+RFF¹

We can also consider optional parameters, such as view dependence:

¹Tancik, M., Srinivasan, P.P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron, J.T., Ng, R. Fourier domains. Conference on Neural Information Processing Systems (NeurIPS), 2020

²Oechsle, M., Mescheder, L.M., Niemeyer, M., Strauss, T., Geiger, A. Texture Fields: Learning texture representations in function space. IEEE International Conference on Computer Vision (ICCV), 2019 ³Xiang, F., Xu, Z., Hasan, M., Hold-Geoffroy, Y., Sunkavalli, K., Su, H. NeuTex: Neural texture mapping for volumetric neural rendering. *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2021

We define a kernel

Texture Reconstruction

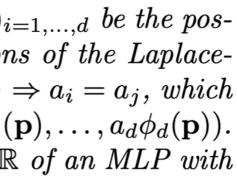
Baseline

Ours

 $k: \mathcal{M} \times \mathcal{M} \to \mathbb{R}$ to be stationary if it can be

written as

$$k(\mathbf{p},\mathbf{q}) = \sum_{i} \hat{k}(\lambda_i)\phi_i(\mathbf{p})\phi_i(\mathbf{q})$$
 (4)



Theorem 1. Let \mathcal{M} be \mathbb{S}^n or a closed 1-manifold. Let $(\lambda_i, \phi_i)_{i=1,...,d}$ be the positive, non-decreasing eigenvalues with associated eigenfunctions of the Laplace-Beltrami operator on \mathcal{M} . Let $a_i \geq 0$ be coefficients s.t. $\lambda_i = \lambda_j \Rightarrow a_i = a_j$, which define the embedding function $\gamma : \mathcal{M} \to \mathbb{R}^d$ with $\gamma(\mathbf{p}) = (a_1\phi_1(\mathbf{p}), \dots, a_d\phi_d(\mathbf{p})).$ Then, the composed neural tangent kernel $k_{NTK} : \mathcal{M} \times \mathcal{M} \to \mathbb{R}$ of an MLP with the embedding γ is stationary as defined in Eq. 4.

Neural Tangent Kernel Analysis

Texture Transfer				Evaluations: Texture Reconstruction				
			Contraction of the second			NeuTex ³	TF ² +RFF ¹	Ours
ST.S	CENSE		Service Se		PSNR [↑]	31,96	34,39	34,82
5		2	L F	cat	DSSIM↓	0,212	0,097	0,095
lense	ARAP	TOSCA cat 2	TOSCA dog 0		LPIPS↓	0,266	0,205	0,153
					PSNR [↑]	29,22	32,26	32,48
cretization-Agnostic Learning				human	DSSIM↓	0,306	0,129	0,121
					LPIPS↓	0,669	0,336	0,306
			H	De De	mo L	Cod	T 74. 2	
iso	dense	qes	cloud↓		Geografia	Pap	er mu	
er Features let networks learn high frequency functions in low dimensional ce. IEEE International Conference on Computer Vision (ICCV), 2019						Data		

Universität Siegen

